Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Funct Integr Genomics ; 23(1): 71, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2269370

ABSTRACT

This article aims to explore hub genes related to different clinical types of cases with COVID-19 and predict the therapeutic drugs related to severe cases. The expression profile of GSE166424 was divided into four data sets according to different clinical types of COVID-19 and then calculated the differential expression genes (DEGs). The specific genes of four clinical types of COVID-19 were obtained by Venn diagram and conducted enrichment analysis, protein-protein interaction (PPI) networks analysis, screening hub genes, and ROC curve analysis. The hub genes related to severe cases were verified in GSE171110, their RNA-specific expression tissues were obtained from the HPA database, and potential therapeutic drugs were predicted through the DGIdb database. There were 536, 266, 944, and 506 specific genes related to asymptomatic infections, mild, moderate, and severe cases, respectively. The hub genes of severe specific genes were AURKB, BRCA1, BUB1, CCNB1, CCNB2, CDC20, CDC6, KIF11, TOP2A, UBE2C, and RPL11, and also differentially expressed in GSE171110 (P < 0.05), and their AUC values were greater than 0.955. The RNA tissue specificity of AURKB, CDC6, KIF11, UBE2C, CCNB2, CDC20, TOP2A, BUB1, and CCNB1 specifically enhanced on lymphoid tissue; CCNB2, CDC20, TOP2A, and BUB1 specifically expressed on the testis. Finally, 55 drugs related to severe COVID-19 were obtained from the DGIdb database. Summary, AURKB, BRCA1, BUB1, CCNB1, CCNB2, CDC20, CDC6, KIF11, TOP2A, UBE2C, and RPL11 may be potential diagnostic biomarkers for severe COVID-19, which may affect immune and male reproductive systems. 55 drugs may be potential therapeutic drugs for severe COVID-19.


Subject(s)
COVID-19 , Humans , Computational Biology , COVID-19/genetics , High-Throughput Nucleotide Sequencing
2.
Cell Rep Methods ; 3(2): 100395, 2023 Feb 27.
Article in English | MEDLINE | ID: covidwho-2237560

ABSTRACT

Assays detecting blood transcriptome changes are studied for infectious disease diagnosis. Blood-based RNA alternative splicing (AS) events, which have not been well characterized in pathogen infection, have potential normalization and assay platform stability advantages over gene expression for diagnosis. Here, we present a computational framework for developing AS diagnostic biomarkers. Leveraging a large prospective cohort of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and whole-blood RNA sequencing (RNA-seq) data, we identify a major functional AS program switch upon viral infection. Using an independent cohort, we demonstrate the improved accuracy of AS biomarkers for SARS-CoV-2 diagnosis compared with six reported transcriptome signatures. We then optimize a subset of AS-based biomarkers to develop microfluidic PCR diagnostic assays. This assay achieves nearly perfect test accuracy (61/62 = 98.4%) using a naive principal component classifier, significantly more accurate than a gene expression PCR assay in the same cohort. Therefore, our RNA splicing computational framework enables a promising avenue for host-response diagnosis of infection.

3.
Front Med (Lausanne) ; 8: 733274, 2021.
Article in English | MEDLINE | ID: covidwho-1518492

ABSTRACT

The prognostic role and diagnostic ability of coronavirus disease 2019 (COVID-19) disease indicators are not elucidated, thus, the current study aimed to investigate the prognostic role and diagnostic ability of several COVID-19 disease indicators including the levels of oxygen saturation, leukocytes, lymphocytes, albumin, C-reactive protein (CRP), interleukin-6 (IL-6), and D-dimer in patients with COVID-19. The levels of oxygen saturation, lymphocytes, and albumin were significantly higher in the common and severe clinical type patients compared with those in critical type patients. However, levels of leukocytes, CRP, IL-6, and D-dimer were significantly lower in the common and severe type patients compared with those in critical type patients (P < 0.001). Moreover, the current study demonstrated that the seven indicators have good diagnostic and prognostic powers in patients with COVID-19. Furthermore, a two-indicator (CRP and D-dimer) prognostic signature in training and testing datasets was constructed and validated to better understand the prognostic role of the indicators in COVID-19 patients. The patients were classified into high-risk and low-risk groups based on the median-risk scores. The findings of the Kaplan-Meier curve analysis indicated a significant divergence between the high-risk and low-risk groups. The findings of the receiver operating curve (ROC) analysis indicated the good performance of the signature in the prognosis prediction of COVID-19. In addition, a nomogram was constructed to assist clinicians in developing clinical decision-making for COVID-19 patients. In conclusion, the findings of the current study demonstrated that the seven indicators are potential diagnostic markers for COVID-19 and a two-indicator prognostic signature identification may improve clinical management for COVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL